Turunanpertama dari suatu fungsi f(x) adalah: Soal Dan Jawaban Aplikasi Turunan Fungsi Trigonometri : Soal Dan Pembahasan Aplikasi Turunan Diferensial Mathcyber1997 / Aplikasi turunan fungsi dalam kehidupan sehari hari youtube.. Materi, aljabar, trigonometri, aplikasi turunan contoh soal dan pembahasan aplikasi turunan fungsi trigonometri
Soaldan Pembahasan Turunan Fungsi Trigonometri. Rumus-rumus yang hendak dipakai dalam penyelesaian turunan fungsi trigonometri yaitu selaku berikut: 1. Jika
LatihanSoal dan Pembahasan Turunan Fungsi. Guna memperdalam pemahaman tentang turunan suatu fungsi, berikut ini diberikan sejumlah latihan soal terkait materi tersebut. Karena soal cukup banyak dan bervariasi serta pembahasannya yang lumayan panjang, maka latihan soal ini akan dibagi menjadi beberapa bagian. Latihan soal dan pembahasan turunan
Fast Money. Kumpulan bank soal latihan persiapan semester 2 materi turunan fungsi trigonometri matematika kelas 11 SMA untuk paket ujian blok atau ulangan harian kenaikan kelas. Soal No. 1 Diketahui fungsi fx = sin 5x. Jika fβx adalah turunan pertama dari fx, maka f x =β¦. A. β 5 cos 5x B. β 1/5 cos 5x C. β cos 5x D. 5 cos 5x E. 1/5 cos 5x Soal No. 2 Diketahui fungsi fx = 2 sin 2x. Jika f x adalah turunan pertama dari fx, maka f Ο /2 =β¦. A. β 8 B. β 4 C. β 2 D. 0 E. 2 Soal No. 3 Diketahui fungsi fx = 6 cos 3x. Turunan pertama dari fx adalahβ¦.. A. β 18 sin 3x B. β 6 sin 3x C. β 2 sin 3x D. 6 sin 3x E. 18 sin 3x Soal No. 4 Diketahui fungsi fx = sin3 5x. Turunan pertama dari fx adalah f x =β¦. A. 5 cos2 5x β
sin 5x B. 5 sin2 5x β
cos 5x C. 10 cos2 5x β
sin 5x D. 15 sin2 5x β
cos 5x E. 15 cos2 5x β
sin 5x Soal No. 5 Diketahui fungsi fx = cos3 5x. Turunan pertama dari fx adalah f x =β¦. A. β5 cos2 5x β
sin 5x B. 5 sin2 5x β
cos 5x C. β10 cos2 5x β
sin 5x D. 15 sin2 5x β
cos 5x E. β15 cos2 5x β
sin 5x Soal No. 6 Turunan dari fungsi fx = sin4 5x adalahβ¦. A. fβx = 10 sin2 5x β
sin 10x B. fβx = 10 sin 5x β
sin2 10x C. fβx = 10 sin3 5x β
sin 10x D. fβx = 10 sin 5x β
sin3 10x E. fβx = 10 sin3 5x β
sin3 10x Soal No. 7 Diketahui fx = sin3 5x+10. Turunan pertama dari fx adalah fβx =β¦. A. 3 sin2 5x + 10β
cos 5x + 10 B. 10 sin2 5x + 10β
cos 5x + 10 C. 15 sin2 5x + 10β
cos 5x + 10 D. 5 cos2 5x + 10 E. 15 cos3 5x + 10 Soal No. 8 Turunan pertama dari fungsi fx = x3 β
cos 2x adalahβ¦. A. 3x2 cos 2x + 2x3 sin 2x B. β 3x2 cos 2x β 2x3 sin 2x C. 3x2 cos 2x β 2x3 sin 2x D. 2 cos 2x + 2x3 sin 2x E. 3x2 cos 2x β 2 sin 2x Soal No. 9 Jika y = 2 sin 3x β 4 cos 2x, maka dy/dx =β¦. A. 2 cos 3x β 4 sin 2x B. 6 cos 3x β 4 sin 2x C. 2 cos 3x + 4 sin 2x D. 6 cos 3x + 8 sin 2x E. β 6 cos 3x β 8 sin 2x Soal No. 10 Diketahui y = 4x5 + sin 3x + cos 4x, maka dy/dx =β¦. A. 20x4 + 3cos 3x + 4 sin 4x B. 20x4 + cos 3x β sin 4x C. 20x4 β 3cos 3x + 4 sin 4x D. 20x4 β 3cos 3x β 4 sin 4x E. 20x4 + 3cos 3x β 4 sin 4x
Postingan ini membahas contoh soal turunan fungsi trigonometri dan pembahasannya. Untuk menyelesaikan soal turunan trigonometri kita menggunakan rumus-rumus turunan seperti turunan perkalian, pembagian dan turunan fungsi komposisi. Secara umum, rumus turunan fungsi trigonometri sebagai berikutJika y = sin x maka turunannya yβ = cos xJika y = cos x maka turunannya yβ = β sin xJika y = tan x maka turunannya yβ = sec2 xJika y = cot x maka turunannya yβ = cosec2 xJika y = sin U maka turunannya yβ = Uβ cos UJika y = sinn U maka turunannya yβ = n sinn β 1 U cos UβJika y = sec x maka turunannya yβ = sec x tan xJika y = cosec x maka turunannya yβ = cosec x cot xUntuk lebih jelasnya dibawah ini diberikan beberapa contoh soal turunan fungsi trigonometri dan soal 1Carilah turunan pertama darisin 3xcos 4xPembahasanJawaban soal 1Misal U = 3xUβ = 3yβ = Uβ cos U = 3 cos 3xJawaban soal 2Misal U = 4xUβ = 4yβ = β Uβ sin U = β 4 sin 4xContoh soal 2Carilah turunan pertama darisin 2x + 3cos 3x β 2PembahasanJawaban soal 1Misal U = 2x + 3Uβ = 2yβ = Uβ cos U = 2 cos 2x + 3Jawban soal 2Misal U = 3x β 2Uβ = 3yβ = β Uβ sin U = β 3 sin 3x β 2Contoh soal 3Carilah f'x dari fungsi-fungsi dibawah = sin2 xfx = cos2 xPembahasanJawaban soal 1 menggunakan rumus turunan fungsi komposisiMisal U = sin xUβ = cos xfU = U2f'U = 2Uf'x = f'U . Uβ = 2U . cos x = 2 sin x cos xJawaban soal 2Misal U = cos xUβ = β sin xfU = U2f'U = 2Uf'x = f'U . Uβ = 2U . β sin x = -2 cos x sin xContoh soal 4Carilah f'x dari fungsi-fungsi dibawah = 2 cot xfx = 6 sin x + 2 cos xPembahasanJawaban soal 1 menggunakan rumus turunan fungsi perkalianMisal U = 2 maka Uβ = 0V = cot x maka Vβ = cosec2 xf'x = Uβ V + U Vβf'x = 0 . cot x + 2 cosec2 x = 2 cosec2 xJawaban soal 2f'x = 6 cos x + 2 . β sin xf'x = 6 cos x β 2 sin xContoh soal 5Carilah turunan dariContoh soal 5 turunan fungsi trigonometriPembahasanJawaban soal aMisal U = 1x = x-1Uβ = -1 x-1 β 1 = β x-2fU = sin Uf'U = cos Uyβ = f'U . Uβ = cos U . β x-2 = β x-2 cos 1xJawaban soal bMisal U = x2Uβ = 2xfU = cos Uf'U = β sin Uyβ = f'U . Uβ = β sin U . 2x = β 2x sin x2Contoh soal 6Carilah turunan dariContoh soal 6 turunan fungsi trigonometriPembahasanJawaban soal a Misal U = 5 maka Uβ = nol V = sin x maka Vβ = cos x yβ = Uβ V β U VβV2 yβ = β 5 cos xsin2 x = β 5 cos xsin2 x Jawaban soal b Misal U = 2 maka Uβ = nol V = cos x maka Vβ = β sin x yβ = Uβ V β U VβV2 yβ = x β 2 - sin xcos2 x = 2 sin xcos2 x Contoh soal 7Carilah turunan dari y = cos2 3x β 2.PembahasanMisalkan U = 3x β 2 maka Uβ = 3fU = cos2 UMisalkan V = cos U maka Vβ = β sin UfV = V2 maka f'V = 2Vyβ = f'V . Vβ . Uβyβ = 2V . β sin U . 3 = 2 cos U . β sin U . 3yβ = -6 sin 3x β 2 cos 3x β 2Contoh soal 8Carilah turunan dari y = sin2 2 β x.PembahasanMisalkan U = 2 β x maka Uβ = -1fU = sin2 UMisalkan V = sin U maka Vβ = cos UfV = V2 maka f'V = 2Vyβ = f'V . Vβ . Uβyβ = 2V . cos U . β 1yβ = 2 sin U . cos U . -1 = -2 sin 2 β x cos 2 β xContoh soal 9Carilah turunan dari y = x2 sin U = x2 maka Uβ = 2xV = sin 3x maka Vβ = 3 cos 3xyβ = Uβ V + U Vβyβ = 2x . sin 3x + x2 . 3 cos 3xContoh soal 10Carilah turunan dari y = x2 cos U = x2 maka Uβ = 2xV = cos 2x maka Vβ = β 2 sin 2xyβ = Uβ V + U Vβyβ = 2x cos 2x + x2 . β 2 sin 2xyβ = 2x cos 2x β 2x2 sin 2xContoh soal 11Contoh soal 11 turunan fungsi trigonometriPembahasanf'x = β 2 cos x + sin xΟ/2 = 90Β°f'90Β° = β 2 cos 90Β° + sin 90Β° = β 2 . 0 + 1 = 1Jadi soal ini jawabannya soal 12Contoh soal 12 turunan fungsi trigonometriPembahasanTurunan fx = sin2x adalah f'x = 2 sin x cos x contoh soal nomor 32 sin x cos x = sin 2xsin 2x = 1/2 maka x = 15Β° = Ο/12 karena sin 2 . 15Β° = sin 30Β° = 1/ soal ini jawabannya E.
belajar matematika dasar SMA dari Soal dan Pembahasan Matematika Dasar Turunan Fungsi Trigonometri. Turunan fungsi trigonometri ini adalah kelanjutan Calon guru belajar matematika dasar SMA dari Soal dan Pembahasan Matematika SMA Turunan Fungsi Trigonometri. Turunan fungsi trigonometri ini adalah kelanjutan atau pengembangan dari turunanan fungsi aljabar. Sama halnya dengan turunan fungsi aljabar bahwa untuk belajar matematika dasar turunan fungsi trigonometri, ada baiknya kita sudah sedikit paham tentang limit fungsi aljabar. Terkhusus lagi untuk belajar turunan fungsi trigonometri, kita juga sudah belajar limit fungsi trigonometri, karena ini adalah salah satu syarat perlu, agar lebih cepat dalam belajar turunan fungsi. Penerapan turunan fungsi trigonometri dalam kehidupan sehari-hari sangat banyak, diantaranya menemukan nilai maksimum atau minimum. Mempelajari dan menggunakan aturan-aturan pada turunan fungsi trigonometri bukanlah hal sulit, jika kita mau mengikuti step by step yang kita diskusikan pada alternatif pembahasan soal dibawah ini, maka kita akan bisa memahami soal-soal turunan fungsi trigonometri. Turunan diferensial dari sebuah fungsi $f$ adalah fungsi yang dituliskan $f'$ dibaca"f aksen". Jika sebuah fungsi dengan variabel $x$ dituliskan $fx$ maka turunan pertama fungsi tersebut adalah $f'x$, didefinisikan $f'x=\lim\limits_{h \to 0} \dfrac{fx+h-fx}{h}$ dengan catatan bahwa nilai limit ini ada. Jika $f'x$ bisa diperoleh $f$ dikatakan dapat diturunakan diferentiable. Selain bentuk $f'x$ dibaca"f aksen x", bentuk lain yang umum dipakai pada penulisan turunan fungsi $y=fx$ adalah $y'$ atau $D_{x}fx$ atau $\dfrac{dy}{dx}$ atau $\dfrac{d \leftfx\right}{dx}$. ATURAN TURUNAN FUNGSI Dari definisi turunan fungsi di atas, diperoleh beberapa aturan dasar turunan fungsi yang dapat digunakan pada turunan fungsi aljabar atau turunan fungsi trigonometri, antara lain Jika $fx=k$ kkonstanta maka $f'x=0$ Jika $fx=x$ maka $f'x=1$ Jika $fx= kx^{n}$ maka $f'x=knx^{n-1}$ Jika $fx= k \cdot ux$ maka $f'x=k \cdot u'x$ Jika $fx=ux+vx$ maka $f'x=u'x + v'x$ Jika $fx=ux - vx$ maka $f'x=u'x - v'x$ Jika $fx=ux \cdot vx$ maka $f'x=u'x \cdot vx+ux \cdot v'x$ Jika $fx=\dfrac{ux}{vx}$ maka $f'x=\dfrac{u'x \cdot vx-ux \cdot v'x}{v^{2}x}$ Jika $fx= u^{n}x$ maka $f'x=n \cdot u^{n-1}x \cdot u'x$ Jika $fx= \left ux \right $ maka $f'x=\dfrac{ux}{\left ux \right } \cdot u'x,\ \ u\neq 0 $ Jika $fx= ln\ ux$ maka $f'x=\dfrac{u'x}{ux}$ Jika $fx=e^{ux}$ maka $f'x=u'x \cdot e^{ux}$ Jika $fx=log_{a}ux$ maka $f'x= \dfrac{u'x}{ln\ a \cdot ux}$ Jika $fx=a^{ux}$ maka $f'x=a^{ux} \cdot u'x \cdot ln\ a$ ATURAN TURUNAN FUNGSI TRIGONOMETRIDari definisi turunan fungsi, selain beberapa aturan pada turunan fungsi di atas, khusus untuk turunan fungsi trigonometri diperoleh beberapa aturan dasar turunan fungsi, yaitu Jika $fx=sin\ ux$ maka $f'x=u'x \cdot cos\ ux$ Jika $fx=cos\ ux$ maka $f'x=-u'x \cdot sin\ ux$ Jika $fx= tan\ ux$ maka $f'x=u'x \cdot sec^{2}\ ux$ Jika $fx= cot\ ux$ maka $f'x=-u'x \cdot csc^2\ ux$ Jika $fx= sec\ ux$ maka $f'x=u'x \cdot sec\ ux\ tan\ ux$ Jika $fx=csc\ ux$ maka $f'x=-u'x \cdot csc\ ux\ cot\ ux$ Jika $fx=arcsin\ ux$ maka $f'x=\dfrac{u'x}{\sqrt{1-u^{2}x}}$ Jika $fx=arccos\ ux$ maka $f'x=\dfrac{-u'x}{\sqrt{1-u^{2}x}}$ Jika $fx=arctan\ ux$ maka $f'x=\dfrac{u'x}{1+u^{2}x}$ Jika $fx=arccot\ ux$ maka $f'x=\dfrac{-u'x}{1+u^{2}x}$ Jika $fx=arcsec\ ux$ maka $f'x=\dfrac{u'x}{ux \sqrt{u^{2}x-1}}$ Jika $fx=arccsc\ ux$ maka $f'x=\dfrac{-u'x}{ux \sqrt{u^{2}x-1}}$ Jika $fx=sinh\ ux$ maka $f'x= u'x \cdot cosh\ ux$ Jika $fx=cosh\ ux$ maka $f'x=-u'x \cdot sinh\ ux$ Jika $fx=tanh\ ux$ maka $f'x=u'x \cdot sech^{2}\ ux$ Jika $fx=coth\ ux$ maka $f'x=-u'x \cdot csch^2\ ux$ Jika $fx=sech\ ux$ maka $f'x=-u'x \cdot sech\ ux\ tanh\ ux$ Jika $fx=csch\ ux$ maka $f'x=-u'x \cdot csch\ ux\ coth\ ux$ Jika $fx=sinh^{-1}\ ux$ maka $f'x=\dfrac{u'x}{\sqrt{u^{2}x+1}}$ Jika $fx=cosh^{-1}\ ux$ maka $f'x=\dfrac{u'x}{\sqrt{u^{2}x-1}}$ Jika $fx=tanh^{-1}\ ux$ maka $f'x=\dfrac{u'x}{1-u^{2}x}$ Jika $fx=coth^{-1}\ ux$ maka $f'x=\dfrac{u'x}{1-u^{2}x}$ Jika $fx=sech^{-1}\ ux$ maka $f'x=\dfrac{-u'x}{ux\sqrt{1-u^{2}x}}$ Jika $fx=csch^{-1}\ ux$ maka $f'x=\dfrac{-u'x}{ux \sqrt{1+u^{2}x}}$ MENENTUKAN GRADIEN GARIS SINGGUNG KURVA Jika kurva $y=fx$ disinggung oleh garis $g$ dititik $x_{1},y_{1}$, gradien garis singgung $g$ adalah $m=f'x_{1}$ dan persamaan garis singgung $g$ adalah $y-y_{1}=mx-x_{1}$. FUNGSI NAIK DAN FUNGSI TURUN Jika $f'x \gt 0$ maka fungsi $y=fx$ naik atau sebaliknya jika $y=fx$ naik maka $f'x \gt 0$ Jika $f'x \lt 0$ maka fungsi $y=fx$ turun atau sebaliknya jika $y=fx$ turun maka $f'x \lt 0$ NILAI MAKSIMUM atau NILAI MINIMUMNilai maksimum atau minimum suatu fungsi $fx$ dapat ditentukan dengan uji turunan pertama atau uji turunan kedua. Jika $x=a$ pada $f'a=0$ sehingga $f''a \gt 0$ maka $x=a$ adalah pembuat $fx$ minimum atau nilai minimum $fx$ adalah $fa$. Jika $x=a$ pada $f'a=0$ sehingga $f''a \lt 0$ maka $x=a$ adalah pembuat $fx$ maskimum atau nilai maksimum $fx$ adalah $fa$. Soal dan Pembahasan Matematika SMA Turunan Fungsi Trigonometri Untuk memantapkan beberapa aturan dasar turunan fungsi trigonometri di atas, mari kita coba beberapa soal latihan yang kita pilih secara acak dari soal-soal Ujian Nasional atau seleksi masuk perguruan tinggi negeri atau sekolah kedinasanπ. 1. Soal UMPTN 1992 Rayon A *Soal LengkapDiketahui fungsi $fx=\dfrac{2+cos\ x}{sin\ x}$. Garis singgung grafiknya pada $x=\dfrac{\pi}{2}$ memotong sumbu $y$ di titik $x=\left 0,b \right$. Nilai $b$ adalah... $\begin{align} A\ & 2 \\ B\ & \dfrac{\pi}{2} \\ C\ & -2+\dfrac{\pi}{2} \\ D\ & 2-\dfrac{\pi}{2} \\ E\ & 2+\dfrac{\pi}{2} \end{align}$ Alternatif PembahasanUntuk kita ingat bahwa jika $y=sin\ x$ maka $y'=cos\ x$ dan $y=cos\ x$ maka $y'=-sin\ x$. Untuk $x=\dfrac{\pi}{2}=90^{\circ}$ pada $fx=\dfrac{2+cos\ x}{sin\ x}$ maka kita peroleh $\begin{align} y &=\dfrac{2+cos\ x}{sin\ x} \\ &=\dfrac{2+cos\ 90^{\circ}}{sin\ 90^{\circ}} \\ &=\dfrac{2+0}{1}=2 \\ \hline x,y &= \left 90^{\circ},2 \right \end{align}$ Gradien garis singgung di sebuah titik dapat kita tentukan dengan menggunakan turunan pertama yaitu $m=f'x$, sehingga saat $x=\dfrac{\pi}{2}=90^{\circ}$ kita peroleh $\begin{align} fx\ &= \dfrac{2+cos\ x}{sin\ x} \\ \hline fx\ &= \dfrac{u}{v}\ \rightarrow f'x = \dfrac{u' \cdot v-u \cdot v'}{v^{2}} \\ \hline m=f'x &= \dfrac{\left -sin\ x \right\leftsin\ x \right-\left 2+cos\ x \right\leftcos\ x \right}{sin^{2} x} \\ &= \dfrac{ -sin^{2} x -\left 2cos\ x+cos^{2} x \right}{sin^{2} x} \\ &= \dfrac{ -sin^{2} x -2cos\ x-cos^{2} x }{sin^{2} x} \\ &= \dfrac{ - \left sin^{2}+cos^{2} x \right -2cos\ x }{sin^{2} x} \\ &= \dfrac{ - 1 -2cos\ x }{sin^{2} x} \\ &= \dfrac{ - 1 -2cos\ 90^{\circ} }{sin^{2} 90^{\circ}} \\ &= \dfrac{ - 1 -2 0 }{1^{2}} \\ &= -1 \\ \end{align}$ Persaman garis untuk $m=-1$ pada $x,y= \left 90^{\circ},2 \right$ adalah $\begin{align} y-y_{1} &= m \left x-x_{1} \right \\ y-2 &= -1 \left x- 90^{\circ} \right \\ y-2 &= -x+ 90^{\circ} \\ y &= -x+2+ 90^{\circ} \end{align}$ Garis memotong sumbu $y$ di titik $\left 0,b \right$ sehingga $\begin{align} y &= -x+2+ 90^{\circ} \\ b &= -0+2+ 90^{\circ} \\ b &=2+ 90^{\circ} \end{align}$ $\therefore$ Pilihan yang sesuai adalah $E\ 2+\dfrac{\pi}{2}$2. Soal UMPTN 1993 Rayon B *Soal LengkapJika $fx= - \left cos^{2}x-sin^{2}x \right$, maka $f'x$ adalah... $\begin{align} A\ & 2 \left cos\ x + sin\ x \right \\ B\ & 2 \left cos\ x - sin\ x \right \\ C\ & sin\ x\ cos\ x \\ D\ & 2\ sin\ x\ cos\ x \\ E\ & 4\ sin\ x\ cos\ x \end{align}$ Alternatif PembahasanUntuk menyelesaikan soal ini kita meminjam sifat dari identitas trigonometri yaitu $sin\ 2x=2\ sin\ x\ cos\ x$ dan $cos\ 2x=cos^{2}x-sin^{2}x$, sehingga berlaku $\begin{align} fx &= - \left cos^{2}x-sin^{2}x \right \\ &= - \left -2\ sin\ 2x \right \\ &= 2\ sin\ 2x \\ &= 2\ \cdot 2 sin\ x\ cos\ x \\ &= 4 sin\ x\ cos\ x \end{align}$ $\therefore$ Pilihan yang sesuai adalah $E\ 4\ sin\ x\ cos\ x$3. Soal UMPTN 1993 Rayon B *Soal LengkapJika $y=3x^{4}+sin\ 2x +cos\ 3x$, maka $\dfrac{dy}{dx}=\cdots$ $\begin{align} A\ & 12x^{3}+2\ cos\ 2x +3\ sin\ 3x \\ B\ & 12x^{3}+ cos\ 2x - sin\ 3x \\ C\ & 12x^{3}-2\ cos\ 2x +3\ sin\ 3x \\ D\ & 12x^{3}-2\ cos\ 2x -3\ sin\ 3x \\ E\ & 12x^{3}+2\ cos\ 2x -3\ sin\ 3x \end{align}$ Alternatif Pembahasan$\begin{align} y &=3x^{4}+sin\ 2x +3\ cos\ 3x \\ \dfrac{dy}{dx} &=34x^{3}+2\ cos\ 2x -3\ sin\ 3x \\ &=12x^{3}+2\ cos\ 2x -3\ sin\ 3x \end{align}$ $\therefore$ Pilihan yang sesuai adalah $E\ 12x^{3}+2\ cos\ 2x -3\ sin\ 3x$4. Soal UMPTN 1993 Rayon C *Soal LengkapJika $y=2\ sin\ 3x -3\ cos\ 2x$, maka $\dfrac{dy}{dx}=\cdots$ $\begin{align} A\ & 2\ cos\ 3x -3\ sin\ 2x \\ B\ & 6\ cos\ 3x -3\ sin\ 2x \\ C\ & 2\ cos\ 3x +3\ sin\ 2x \\ D\ & 6\ cos\ 3x +6\ sin\ 2x \\ E\ & -6\ cos\ 3x - 6\ sin\ 2x \\ \end{align}$ Alternatif Pembahasan$\begin{align} y &=2\ sin\ 3x -3\ cos\ 2x \\ \dfrac{dy}{dx} &=23\ cos\ 3x -3 \left-2\ sin\ 2x \right \\ &=6\ cos\ 3x +6 \ sin\ 2x \end{align}$ $\therefore$ Pilihan yang sesuai adalah $E\ 12x^{3}+2cos\ 2x -3 sin\ 3x$5. Soal UMPTN 1999 Rayon A *Soal LengkapJika $fx=\dfrac{sin\ x+cos\ x}{sin\ x}$, $sin\ x \neq 0$ dan $f'x$ adalah turunan $fx$, maka $f' \left \dfrac{\pi}{2} \right $ $\begin{align} A\ & -2 \\ B\ & -1 \\ C\ & 0 \\ D\ & 1 \\ E\ & 2 \end{align}$ Alternatif Pembahasan$\begin{align} fx\ &= \dfrac{sin\ x+cos\ x}{sin\ x} \\ \hline fx\ &= \dfrac{u}{v}\ \rightarrow f'x = \dfrac{u' \cdot v-u \cdot v'}{v^{2}} \\ \hline f'x &= \dfrac{\left cos\ x - sin\ x \right\left sin\ x \right-\left sin\ x + cos\ x \right\left cos\ x \right}{sin^{2} x} \\ &= \dfrac{cos\ x\ sin\ x - sin^{2} x- sin\ x\ cos\ x-cos^{2}x}{sin^{2} x} \\ &= \dfrac{ - sin^{2} x-cos^{2}x}{sin^{2} x} \\ &= \dfrac{ - \left sin^{2} x+cos^{2}x \right}{sin^{2} x} \\ &= \dfrac{ - 1}{sin^{2} x} \\ \hline f' \left \dfrac{\pi}{2} \right &= \dfrac{ - 1}{sin^{2} \left \dfrac{\pi}{2} \right} \\ &= \dfrac{ - 1}{1} = -1 \end{align}$ $\therefore$ Pilihan yang sesuai adalah $B\ -1$6. Soal UMPTN 1998 Rayon A *Soal LengkapJika $fx=a\ tan\ x +bx$, $f'\left \dfrac{\pi}{4} \right=3$ dan $f'\left \dfrac{\pi}{3} \right=9$, maka $a+b=\cdots$ ... $\begin{align} A\ & 0 \\ B\ & 1 \\ C\ & \dfrac{\pi}{2} \\ D\ & 2 \\ E\ & \pi \end{align}$ Alternatif PembahasanCatatan calon guru yang mungkin kita perlukan tentang Turunan Fungsi yaitu jika $fx=tan\ x$ maka $f'x=sec^{2} x$. Apabila bentuk ini tidak ingat waktu ujian maka, hal yang paling mungkin kita lakukan adalah menurunkan $fx=tan\ x=\dfrac{sin\ x}{cos\ x}$ pakai aturan $y=\dfrac{u}{v}$ maka $y'=\dfrac{u' \cdot v+u \cdot v'}{v^{2}}$. $\begin{align} fx & = a\ tan\ x +bx \\ f'x & = a\ sec^{2} x +b \\ f'x & = \dfrac{a}{cos^{2} x} +b \\ \hline f'\left \dfrac{\pi}{4} \right & = \dfrac{a}{cos^{2} \left \dfrac{\pi}{4} \right} +b \\ 3 & = \dfrac{a}{cos^{2} \left 45^{\circ} \right} +b \\ 3 & = \dfrac{a}{\left \frac{1}{2}\sqrt{2} \right^{2}} +b \\ 3 & = \dfrac{a}{ \frac{1}{2}} +b \\ 3 & = 2a +b \\ \hline f'\left \dfrac{\pi}{3} \right & = \dfrac{a}{cos^{2} \left \dfrac{\pi}{3} \right} +b \\ 9 & = \dfrac{a}{cos^{2} \left 60^{\circ} \right} +b \\ 9 & = \dfrac{a}{\left \frac{1}{2} \right^{2}} +b \\ 9 & = \dfrac{a}{\frac{1}{4}} +b \\ 9 & = 4a +b \\ \end{align}$ Dengan mengeliminasi atau substitusi, kita peroleh $\begin{array}{cccc} 2a+b = 3 & \\ 4a+b = 9 & - \\ \hline 2a = 6 & \\ a = 3 & \\ b = -3 & \\ \hline a+b=0 \end{array} $ $\therefore$ Pilihan yang sesuai $A\ 0$7. Soal SPMB 2002 Regional I *Soal LengkapTurunan pertama dari $y=cos^{4}\ x$ adalah... $\begin{align} A\ & \dfrac{1}{4}\ cos^{3}x \\ B\ & -\dfrac{1}{4}\ cos^{3}x \\ C\ & \dfrac{1}{4}\ sin^{3}x \\ D\ & -4\ sin^{3}x cos\ x \\ E\ & -4\ cos^{3}x\ sin\ x \end{align}$ Alternatif PembahasanUntk menyelesaikan masalah di atas kita coba dengan pemisalan $\begin{align} u & = cos\ x \\ \dfrac{du}{dx} & = -sin\ x \\ \hline y & = cos^{4}\ x\\ y & = u^{4} \\ \dfrac{dy}{du} & = 4u^{3} \\ \hline \dfrac{dy}{dx} & = \dfrac{dy}{du} \cdot \dfrac{du}{dx} \\ & = 4u^{3} \cdot \left -sin\ x \right \\ & = 4cos^{3}\ x \cdot \left -sin\ x \right \\ & = -4cos^{3}\ x \cdot sin\ x \end{align}$ $\therefore$ Pilihan yang sesuai $E\ -4\ cos^{3}\ x \cdot sin\ x$8. Soal UM STIS 2011 *Soal LengkapJika $fx=a\ tan\ x +bx$, $f'\left \dfrac{\pi}{4} \right=3$ dan $f'\left \dfrac{\pi}{3} \right=9$, maka $a+b=\cdots$ ... $\begin{align} A\ & 0 \\ B\ & 2 \\ C\ & \dfrac{24}{5} \\ D\ & 6 \\ E\ & \dfrac{39}{5} \end{align}$ Alternatif PembahasanCatatan calon guru yang mungkin kita perlukan tentang Turunan Fungsi yaitu jika $fx=tan\ x$ maka $f'x=sec^{2} x$. Apabila bentuk ini tidak ingat waktu ujian maka, hal yang paling mungkin kita lakukan adalah menurunkan $fx=tan\ x=\dfrac{sin\ x}{cos\ x}$ pakai aturan $y=\dfrac{u}{v}$ maka $y'=\dfrac{u' \cdot v+u \cdot v'}{v^{2}}$. $\begin{align} fx & = a\ tan\ x +bx \\ f'x & = a\ sec^{2} x +b \\ f'x & = \dfrac{a}{cos^{2} x} +b \\ \hline f'\left \dfrac{\pi}{4} \right & = \dfrac{a}{cos^{2} \left \dfrac{\pi}{4} \right} +b \\ 3 & = \dfrac{a}{cos^{2} \left 45^{\circ} \right} +b \\ 3 & = \dfrac{a}{\left \frac{1}{2}\sqrt{2} \right^{2}} +b \\ 3 & = \dfrac{a}{ \frac{1}{2}} +b \\ 3 & = 2a +b \\ \hline f'\left \dfrac{\pi}{3} \right & = \dfrac{a}{cos^{2} \left \dfrac{\pi}{3} \right} +b \\ 9 & = \dfrac{a}{cos^{2} \left 60^{\circ} \right} +b \\ 9 & = \dfrac{a}{\left \frac{1}{2} \right^{2}} +b \\ 9 & = \dfrac{a}{\frac{1}{4}} +b \\ 9 & = 4a +b \\ \end{align}$ Dengan mengeliminasi atau substitusi, kita peroleh $\begin{array}{cccc} 2a+b = 3 & \\ 4a+b = 9 & - \\ \hline 2a = 6 & \\ a = 3 & \\ b = -3 & \\ \hline a+b=0 \end{array} $ $\therefore$ Pilihan yang sesuai $A\ 0$9. Soal SBMPTN 2017 Kode 106/124 *Soal LengkapJika $fx=sinsin^{2}x$, maka $f'x=\ldots$ $\begin{align} A\ & 2\ sin\ x \cdot cossin^{2}x \\ B\ & 2\ sin\ 2x \cdot cossin^{2}x \\ C\ & sin^{2}x \cdot cossin^{2}x \\ D\ & sin^{2}2x \cdot cossin^{2}x \\ E\ & sin\ 2x \cdot cossin^{2}x \end{align}$ Alternatif PembahasanUntuk mendapatkan turunan pertama dari fungsi di atas kita coba gunakan aturan rantai, yaitu $f'x = \dfrac{df}{dx} = \dfrac{df}{dv} \cdot \dfrac{dv}{du}\cdot \dfrac{du}{dx}$ Soal$fx=sinsin^{2}x$ Misal $u=sin\ x$ $\Rightarrow \dfrac{du}{dx}=cos\ x$ Soal$fx=sinu^{2}$ Misal $v=u^{2}$ $\Rightarrow \dfrac{dv}{du}=2u$ Soal$fx=sinv$ $\Rightarrow \dfrac{df}{dv}=cosv$ $\begin{split} f'x = \dfrac{df}{dx} & = \dfrac{df}{dv} \cdot \dfrac{dv}{du}\cdot \dfrac{du}{dx}\\ & =cosv \cdot 2u \cdot cos\ x\\ & =cosu^{2} \cdot 2sin\ x \cdot cos\ x\\ & =cossin^{2}x \cdot 2sin\ x \cdot cos\ x\\ & =cossin^{2}x \cdot sin\ 2x\\ & = sin\ 2x \cdot cossin^{2}x \end{split}$ $\therefore$ Pilihan yang sesuai adalah $E\ sin\ 2x \cdot cossin^{2}x$ 10. Soal SBMPTN 2017 Kode 135 *Soal Lengkap Misalkan $fx=2\ tan \left\sqrt{sec\ x} \right$, maka $f'x\cdots$ $\begin{align} A\ & sec^{2} \left\sqrt{sec\ x} \right \cdot tan\ x \\ B\ & sec^{2}\left\sqrt{sec\ x} \right \cdot \sqrt{sec\ x} \cdot tan\ x \\ C\ & 2sec^{2}\left\sqrt{sec\ x} \right \cdot \sqrt{sec\ x} \cdot tan\ x \\ D\ & sec^{2}\left\sqrt{sec\ x} \right \cdot sec\ x \cdot tan\ x \\ E\ & 2sec^{2}\left\sqrt{sec\ x} \right \cdot sec\ x \cdot tan\ x \end{align}$ Alternatif Pembahasan Untuk mendapatkan turunan pertama dari fungsi di atas kita coba gunakan aturan rantai, yaitu $f'x = \dfrac{df}{dx} = \dfrac{df}{dv} \cdot \dfrac{dv}{du}\cdot \dfrac{du}{dx}$ Soal$fx=2\ tan \left\sqrt{sec\ x} \right$ Misal $u=sec\ x$ $\Rightarrow \dfrac{du}{dx}=sec\ x\ \cdot \tan\ x$ Soal$fx=2\ tan \left\sqrt{u} \right$ Misal $v=\sqrt{u}$ $\Rightarrow \dfrac{dv}{du}=\dfrac{1}{2\sqrt{u}}$ Soal$fx=2\ tan \left v \right$ $\Rightarrow \dfrac{df}{dv}=2sec^{2}v$ $\begin{split} f'x = \dfrac{df}{dx} &= \dfrac{df}{dv} \cdot \dfrac{dv}{du}\cdot \dfrac{du}{dx}\\ & =2sec^{2}v \cdot \dfrac{1}{2\sqrt{u}} \cdot sec\ x\ \cdot \tan\ x \\ & =2sec^{2}\left \sqrt{u} \right \cdot \dfrac{1}{2\sqrt{sec\ x}} \cdot sec\ x\ \cdot \tan\ x \\ & =sec^{2}\left \sqrt{sec\ x} \right \cdot \dfrac{1}{\sqrt{sec\ x}} \cdot sec\ x\ \cdot \tan\ x \\ & = sec^{2}\left \sqrt{sec\ x} \right \cdot \sqrt{sec\ x} \cdot \tan\ x \end{split}$ $\therefore$ Pilihan yang sesuai adalah $B\ sec^{2}\left\sqrt{sec\ x} \right \cdot \sqrt{sec\ x} \cdot tan\ x$ 11. Soal SPMB 2005 Regional II *Soal Lengkap Turunan pertama dari fungsi $fx=\dfrac{1+cos\ x}{sin\ x}$ adalah $f'x=\cdots$ $\begin{align} A\ & \dfrac{1-sin\ x}{sin^{2}x} \\ B\ & \dfrac{ sin\ x-1}{cos\ x-1} \\ C\ & \dfrac{ 2}{cos\ x+1} \\ D\ & \dfrac{ 2}{sin\ x-1} \\ E\ & \dfrac{1}{cos\ x-1} \end{align}$ Alternatif Pembahasan $\begin{align} fx\ &= \dfrac{1+cos\ x}{sin\ x} \\ \hline & u\ = 1+cos\ x \rightarrow u'=-sin\ x \\ & v\ = sin\ x \rightarrow v'=cos\ x \\ \hline fx\ &= \dfrac{u}{v} \\ f'x &= \dfrac{u' \cdot v-u \cdot v'}{v^{2}} \\ f'x &= \dfrac{\left -sin\ x \right\left sin\ x \right-\left 1 + cos\ x \right\left cos\ x \right}{sin^{2} x} \\ &= \dfrac{ -sin^{2}\ x - cos\ x - cos^{2} x }{sin^{2} x} \\ &= \dfrac{ -\left sin^{2}\ x+cos^{2} x \right - cos\ x}{sin^{2} x} \\ &= \dfrac{ -1 - cos\ x}{sin^{2} x} \\ &= \dfrac{ - \left1 + cos\ x \right}{1-cos^{2} x} \\ &= \dfrac{ - \left1 + cos\ x \right}{\left1 + cos\ x \right\left1 - cos\ x \right} \\ &= \dfrac{ -1 }{ \left1 - cos\ x \right} \\ &= \dfrac{1}{cos\ x-1} \end{align}$ $\therefore$ Pilihan yang sesuai adalah $E\ \dfrac{1}{cos\ x-1} $ 12. Soal SPMB 2005 Kode 772 Regional I *Soal Lengkap Jika fungsi $fx=sin\ ax + cos\ bx$ memenuhi $f'0=b$ dan $f'\left \frac{\pi}{2a} \right=-1$, maka $a+b=\cdots$ $\begin{align} A\ & -1 \\ B\ & 0 \\ C\ & 1 \\ D\ & 2 \\ E\ & 3 \end{align}$ Alternatif Pembahasan $\begin{align} fx\ &= sin\ ax + cos\ bx \\ f'x\ &= a\ cos\ ax -b\ sin\ bx \\ \hline f'0\ &= a\ cos\ 0 -b\ sin\ 0 \\ b\ &= a\ \cdot 1 -b\ \cdot 0 \\ b\ &= a \\ \hline f'\left \frac{\pi}{2a} \right\ &= a\ cos\ a\left \frac{\pi}{2a} \right -b\ sin\ b\left \frac{\pi}{2a} \right \\ -1\ &= a\ cos\ a\left \frac{\pi}{2a} \right -a\ sin\ a\left \frac{\pi}{2a} \right \\ -1\ &= a\ cos\ \left \frac{\pi}{2 } \right -a\ sin\ \left \frac{\pi}{2 } \right \\ -1\ &= a\ \cdot 0 -a\ \cdot 1 \\ -1\ &= -a \\ a\ &= 1\ \rightarrow b=1 \\ a+b\ &= 2 \end{align}$ $\therefore$ Pilihan yang sesuai adalah $D\ 2$ 13. Soal SPMB 2005 Kode 520 Regional II *Soal Lengkap Jika $fx=sin\ x\ cos\ 3x$, maka $f'\left \frac{1}{6}\pi \right=\cdots$ $\begin{align} A\ & \dfrac{1}{2} \\ B\ & -\dfrac{1}{2} \\ C\ & -1\dfrac{1}{2} \\ D\ & -\dfrac{1}{2}+\sqrt{3} \\ E\ & -1\dfrac{1}{2}+\sqrt{3} \end{align}$ Alternatif Pembahasan $\begin{align} fx\ &= sin\ x\ cos\ 3x\\ \hline & u\ = sin\ x \rightarrow u'=cos\ x \\ & v\ = cos\ 3x \rightarrow v'=-3\ sin\ 3x \\ \hline \hline fx\ &= u \cdot v \\ f'x &= u' \cdot v + u \cdot v' \\ f'x &= cos\ x \cdot cos\ 3x + sin\ x \cdot -3\ sin\ 3x \\ &= cos\ x \cdot cos\ 3x -3 sin\ x \cdot sin\ 3x \\ \hline f'\left \frac{1}{6}\pi \right &= cos\ \left \frac{1}{6}\pi \right \cdot cos\ 3\left \frac{1}{6}\pi \right -3 sin\ \left \frac{1}{6}\pi \right \cdot sin\ 3\left \frac{1}{6}\pi \right \\ &= cos\ 30^{\circ} \cdot cos\ 90^{\circ} -3 sin\ 30^{\circ} \cdot sin\ 90^{\circ} \\ &= \dfrac{1}{2} \sqrt{3} \cdot 0 -3 \cdot \dfrac{1}{2} \cdot 1 \\ &= 0 - \dfrac{3}{2} \\ &=- \dfrac{3}{2} \end{align}$ $\therefore$ Pilihan yang sesuai adalah $C\ -1\dfrac{1}{2}$ 14. Soal SPMB 2005 Kode 171 Regional III *Soal Lengkap Turunan pertama dari fungsi $y= \left sin\ x\ + cos\ x \right^{2}$ adalah $y'=\cdots$ $\begin{align} A\ & 0 \\ B\ & 4\ sin^{2}x \\ C\ & 4\ sin^{2}x-2 \\ D\ & 4\ cos^{2}x-2 \\ E\ & 4\ cos^{2}x-4 \\ \end{align}$ Alternatif Pembahasan $\begin{align} fx\ &= \left sin\ x\ + cos\ x \right^{2} \\ &= sin^{2} x\ + cos^{2} x + 2\ sin\ x\ cos\ x \\ &= 1 + 2\ sin\ x\ cos\ x \\ &= 1 + sin\ 2x \\ f'x &= 2\ cos\ 2x \\ &= 2\ \left 2cos^{2}x-1 \right \\ &= 4\ cos^{2}x-2 \end{align}$ Alternatif yang lain dapat juga kita gunakan sifat turunan yaitu $\begin{align} fx\ &= \left sin\ x\ + cos\ x \right^{2} \\ f'x &= 2 \left sin\ x\ + cos\ x \right \left cos\ x\ - sin\ x \right \\ &= 2 \left cos^{2}\ x\ - sin^{2}\ x \right \\ &= 2 \left cos^{2}\ x\ - 1 +cos^{2}\ x \right \\ &= 2 \left 2cos^{2}\ x\ - 1 \right \\ &= 4\ cos^{2}x- 2 \end{align}$ $\therefore$ Pilihan yang sesuai adalah $D\ 4\ cos^{2}x-2$ 15. Soal UM UGM 2005 Kode 821 *Soal Lengkap Jika $f\left x \right= \sqrt{1+sin^{2}x},\ 0 \leq x \leq \pi$, maka $f'\left x \right \cdot f\left x \right$ sama dengan... $\begin{align} A\ & \left 1+sin^{2}x \right sin\ x\ cos\ x \\ B\ & \left 1+sin^{2}x \right \\ C\ & sin\ x\ cos\ x \\ D\ & sin\ x \\ E\ & \dfrac{1}{2} \\ \end{align}$ Alternatif Pembahasan $\begin{align} f\left x \right\ &= \sqrt{1+sin^{2}x} \\ f\left x \right\ &= \left 1+sin^{2}x \right^{\frac{1}{2}} \\ f'\left x \right\ &= \frac{1}{2} \cdot \left 1+sin^{2}x \right^{-\frac{1}{2}} \cdot 2 \cdot sin\ x \cdot cos\ x \\ &= \dfrac{1}{\sqrt{1+sin^{2}x}} \cdot sin\ x \cdot cos\ x \\ &= \dfrac{sin\ x \cdot cos\ x}{\sqrt{1+sin^{2}x}} \\ \hline f'\left x \right \cdot f\left x \right &= \sqrt{1+sin^{2}x} \cdot \dfrac{sin\ x \cdot cos\ x}{\sqrt{1+sin^{2}x}} \\ &= sin\ x \cdot cos\ x \end{align}$ $\therefore$ Pilihan yang sesuai adalah $C\ sin\ x\ cos\ x$ 16. Soal UM UGM 2005 Kode 621 *Soal Lengkap Diketahui $f\left x \right= x\ sin\ 3x$, maka $f'\left \frac{\pi}{4} \right$ sama dengan... $\begin{align} A\ & \dfrac{\sqrt{2}}{2} \left1+ \dfrac{3\pi}{4} \right\\ B\ & \dfrac{\sqrt{2}}{4} \left1+ \dfrac{3\pi}{4} \right\\ C\ & \dfrac{\sqrt{2}}{2} \left1- \dfrac{3\pi}{4} \right\\ D\ & \dfrac{\sqrt{2}}{2} \left \dfrac{3\pi}{4}-1 \right\\ E\ & \dfrac{-\sqrt{2}}{2} \left1+ \dfrac{3\pi}{4} \right \end{align}$ Alternatif Pembahasan $\begin{align} f\left x \right\ &= x\ sin\ 3x \\ \hline & u\ = x \rightarrow u'=1 \\ & v\ = sin\ 3x \rightarrow v'= 3\ cos\ 3x \\ \hline fx\ &= u \cdot v \\ f'x &= u' \cdot v + u \cdot v' \\ f'x &= 1 \cdot sin\ 3x + x \cdot 3\ cos\ 3x \\ &= sin\ 3x + 3x \cdot cos\ 3x \\ f'\left \frac{\pi}{4} \right &= sin\ 3\left \frac{\pi}{4} \right + 3\left \frac{\pi}{4} \right \cdot cos\ 3\left \frac{\pi}{4} \right \\ &= sin\ 135^{\circ} + 3\left \frac{\pi}{4} \right \cdot cos\ 135^{\circ} \\ &= \dfrac{\sqrt{2}}{2} + 3\left \frac{\pi}{4} \right \cdot \left -\dfrac{\sqrt{2}}{2} \right \\ &= \dfrac{\sqrt{2}}{2} - 3\left \frac{\pi}{4} \right \cdot \left \dfrac{\sqrt{2}}{2} \right \\ &= \left \dfrac{\sqrt{2}}{2} \right \left1 - 3 \cdot \frac{\pi}{4} \right \\ \end{align}$ $\therefore$ Pilihan yang sesuai adalah $C\ \dfrac{\sqrt{2}}{2} \left1- \dfrac{3\pi}{4} \right$ 17. Soal UM UGM 2006 Kode 381 *Soal Lengkap Jika $f\left x \right= \dfrac{cos\ x -sin\ x}{cos\ x + sin\ x}$, dengan $cos\ x +sin x \neq 0$ maka $f'\left x \right=\cdots$ $\begin{align} A\ & 1- \left fx \right^{2}\\ B\ & -1+\left fx \right^{2}\\ C\ & - \left1+ \left fx \right^{2} \right \\ D\ & 1 + \left fx \right^{2}\\ E\ & \left fx \right^{2} \end{align}$ Alternatif Pembahasan $\begin{align} f\left x \right\ &= \dfrac{cos\ x -sin\ x}{cos\ x + sin\ x} \\ \hline & u\ = cos\ x -sin\ x \rightarrow u'=-sin\ x - cos\ x \\ & v\ = cos\ x + sin\ x \rightarrow v'= -sin\ x + cos\ x \\ \hline fx\ &= \dfrac{u}{v} \\ f'x &= \dfrac{u' \cdot v-u \cdot v'}{v^{2}} \\ f'x &= \dfrac{\left -sin\ x - cos\ x \right\left cos\ x + sin\ x \right-\left cos\ x -sin\ x \right\left -sin\ x + cos\ x \right}{\left cos\ x + sin\ x \right^{2} } \\ &= \dfrac{-\left sin\ x + cos\ x \right^{2} -\left cos\ x -sin\ x \right^{2}}{\left cos\ x + sin\ x \right^{2} } \\ &= \dfrac{-\left sin\ x + cos\ x \right^{2}}{\left cos\ x + sin\ x \right^{2}} - \dfrac{\left cos\ x -sin\ x \right^{2}}{\left cos\ x + sin\ x \right^{2} }\\ &= -1 - \dfrac{\left cos\ x -sin\ x \right^{2}}{\left cos\ x + sin\ x \right^{2} }\\ &= -1 - \left fx \right^{2} \end{align}$ $\therefore$ Pilihan yang sesuai adalah $C\ - \left1+ \left fx \right^{2} \right$ 18. Soal UMPTN 1994 Rayon B *Soal Lengkap Jika $fx=x\ cos\ x$, maka $f'\leftx + \frac{\pi}{2} \right=\cdots$ $\begin{align} A\ & -sin\ x\ -x\ cos\ x + \frac{\pi}{2}\ cos\ x \\ B\ & -sin\ x\ -x\ cos\ x - \frac{\pi}{2}\ cos\ x \\ C\ & -sin\ x\ + x\ cos\ x - \frac{\pi}{2}\ cos\ x \\ D\ & -sin\ x\ + x\ cos\ x + \frac{\pi}{2}\ cos\ x \\ E\ & -cos\ x\ + x\ sin\ x + \frac{\pi}{2}\ cos\ x \end{align}$ Alternatif Pembahasan Untuk kita ingat bahwa $y=sin\ \left\frac{\pi}{2}+x \right=cos\ x$ dan $y=cos\ \left\frac{\pi}{2}+x \right=-sin\ x$. $\begin{align} fx &= x\ cos\ x \\ f\leftx + \frac{\pi}{2} \right &= \leftx + \frac{\pi}{2} \right\ cos\ \leftx + \frac{\pi}{2} \right \\ &= -\leftx + \frac{\pi}{2} \right\ sin\ x \\ \hline & u\ = -\leftx + \frac{\pi}{2} \right \rightarrow u'=-1 \\ & v\ = sin\ x \rightarrow v'= cos\ x \\ \hline fx\ &= u \cdot v \\ f'\leftx \right &= u' \cdot v + u \cdot v' \\ \hline f' \leftx + \frac{\pi}{2} \right &= -1 \cdot sin\ x -\leftx + \frac{\pi}{2} \right \cdot cos\ x \\ &= -sin\ x -\leftx + \frac{\pi}{2} \right \cdot cos\ x \\ &= -sin\ x - x\ cos\ x - \frac{\pi}{2}\ cos\ x \end{align}$ $\therefore$ Pilihan yang sesuai adalah $B\ -sin\ x\ -x\ cos\ x - \frac{pi}{2}\ cos\ x$ 19. Soal UMPTN 2001 Rayon C *Soal Lengkap Garis $g$ menyinggung kurva $y=sin\ x + cos\ x$ di titik yang berabsis $\dfrac{1}{3}\pi$. Gradien garis yang tegak lurus pada garis $g$ adalah... $\begin{align} A\ & 1-\sqrt{3} \\ B\ & 1+\sqrt{3} \\ C\ & 1 \\ D\ & \dfrac{\sqrt{3}-1}{2} \\ E\ & \dfrac{1-\sqrt{3}}{2} \end{align}$ Alternatif Pembahasan Untuk kita ingat bahwa jika garis $g$ dan garis $l$ adalah dua buah garis saling tegak lurus maka perkalian gradiennnya adalah $-1$ atau dapat kita tuliskan $m_{g} \cdot m_{l}=-1$. $\begin{align} y &= sin\ x + cos\ x \\ y' &= cos\ x - sin\ x \\ \hline m_{x=\frac{1}{3}\pi} &= cos\ \frac{1}{3}\pi - sin\ \frac{1}{3}\pi \\ &= \dfrac{1}{2} - \dfrac{1}{2}\sqrt{3} \end{align}$ Gradien garis yang tegak lurus dengan garis singgung $g$ bergradien $m_{g}=\dfrac{1}{2} - \dfrac{1}{2}\sqrt{3}$ adalah $\begin{align} m_{g} \cdot m_{l} &= -1 \\ m_{l} &= \dfrac{-1}{\dfrac{1}{2} - \dfrac{1}{2}\sqrt{3}} \\ &= \dfrac{-2}{1 - \sqrt{3}} \\ &= \dfrac{-2}{1 - \sqrt{3}} \times \dfrac{1 + \sqrt{3}}{1 + \sqrt{3}} \\ &= \dfrac{-2 \left 1 + \sqrt{3} \right}{1-3} \\ &= 1 + \sqrt{3} \end{align}$ $\therefore$ Pilihan yang sesuai adalah $B\ 1+\sqrt{3}$ 20. Soal SNMPTN 2011 Kode 578 *Soal Lengkap Diketahui $f\left x \right=x^{\frac{1}{3}}\ sin\ x$. Persamaan garis singgung di $f$ yang melalui titik asal adalah... $\begin{align} A\ & x=0 \\ B\ & y=0 \\ C\ & y=x \\ D\ & y=-x \\ E\ & \text{tidak ada} \end{align}$ Alternatif Pembahasan Gradien garis Untuk kita ingat bahwa jika garis $g$ dan garis $l$ adalah dua buah garis saling tegak lurus maka perkalian gradiennnya adalah $-1$ atau dapat kita tuliskan $m_{g} \cdot m_{l}=-1$. $\begin{align} f\left x \right &= x^{\frac{1}{3}}\ sin\ x \\ f'\left x \right &=\frac{1}{3} \cdot x^{-\frac{2}{3}}\ sin\ x + x^{ \frac{1}{3}}\ cos\ x \\ &=\frac{1}{3} \cdot x^{-\frac{2}{3}}\ sin\ x + x^{ \frac{1}{3}}\ cos\ x \\ \end{align}$ Gradien garis singgung pada kurva yang melalui titik asal adalah $\begin{align} m_{g} &= \frac{1}{3} \cdot x^{-\frac{2}{3}}\ sin\ x + x^{ \frac{1}{3}}\ cos\ x \\ &= \frac{1}{3} \cdot \left 0 \right^{-\frac{2}{3}}\ sin\ \left 0 \right + \left 0 \right^{ \frac{1}{3}}\ cos\ \left 0 \right \\ &= \frac{1}{3} \cdot 0 + 0 \cdot 1 \\ &= 0 \end{align}$ Garis singgung melaluit titik asal $\left 0,0 \right$ dengan gradien $m=0$ adalah $\begin{align} y-y_{1} &= m \leftx-x_{1} \right \\ y-0 &= 0 \leftx- 0 \right \\ y &= 0 \end{align}$ $\therefore$ Pilihan yang sesuai adalah $B\ y=0$ 21. Soal SNMPTN 2010 KOde 528 *Soal Lengkap Jika garis singgung kurva $y=2x\ cos^{3} x$ di titik $\left \pi, -2\pi \right$ tegak lurus dengan garis $g$, maka persamaan garis $g$ adalah... $\begin{align} A\ & y=2x-3\pi \\ B\ & y=2x+\pi \\ C\ & y=\dfrac{1}{2}x-\dfrac{5}{2}\pi \\ D\ & y=-\dfrac{1}{2}x+3\pi \\ E\ & y=\dfrac{1}{2}x+\pi \\ \end{align}$ Alternatif Pembahasan Untuk kita ingat bahwa jika garis $g$ dan garis $l$ adalah dua buah garis saling tegak lurus maka perkalian gradiennnya adalah $-1$ atau dapat kita tuliskan $m_{g} \cdot m_{l}=-1$. $\begin{align} y &= 2x\ cos^{3} x \\ y' &= 2 \cdot cos^{3}\ x +2x \cdot 3 \cdot cos^{2}\ x \left -sin\ x \right \\ &= 2 \cdot cos^{3}\ x - 2x \cdot 3 \cdot cos^{2}\ x\ sin\ x \\ \hline m_{x=\pi} &= 2 \cdot cos^{3}\ \pi - 2\pi \cdot 3 \cdot cos^{2}\ \pi\ sin\ \pi \\ &= 2 \cdot -1^{3} - 2\pi \cdot 3 \cdot -1^{2}\ 0 \\ &= 2 \cdot -1 - 0 = -2 \end{align}$ Karena dua garis yang tegak lurus perkalian gradiennya adalah $-1$ sehingga gradien garis yang tegak lurus dengan garis bergradien $m_{g}=-2$ adalah $ m_{l}=\dfrac{1}{2} $ Persamaan garis di titik $\left \pi, -2\pi \right$ yang tegak lurus dengan garis $g$ adalah $\begin{align} y-y_{1} &= m \leftx-x_{1} \right \\ y+2\pi &= \dfrac{1}{2} \leftx- \pi \right \\ y &= \dfrac{1}{2}x- \dfrac{1}{2}\pi -2\pi \\ y &= \dfrac{1}{2}x- \dfrac{5}{2}\pi \end{align}$ $\therefore$ Pilihan yang sesuai adalah $C\ \dfrac{1}{2}x- \dfrac{5}{2}\pi $ 22. Soal SIMAK UI 2012 Kode 523 *Soal Lengkap Diberikan $fx=sin^{2}x$. Jika $f'x$ menyatakan turunan pertama dari $fx$, maka $\lim\limits_{h \to \infty} h \left\{ f' \left x+\frac{1}{h} \right -f'x\right \}=\cdots$ $\begin{align} A\ & sin\ 2x \\ B\ & -cos\ 2x \\ C\ & 2\ cos\ 2x \\ D\ & 2\ sin\ x \\ E\ & -2\ cos\ x \end{align}$ Alternatif Pembahasan Bentuk limit $\lim\limits_{h \to \infty} h \left\{ f' \left x+\frac{1}{h} \right -f'x\right \}$ pada soal memiliki kemiripan dengan definisi turunan fungsi yaitu $\begin{align} y &= fx \\ f'x &= \lim\limits_{p \to 0} \dfrac{fx+p-fx}{p} \\ f''x &= \lim\limits_{p \to 0} \dfrac{f'x+p-f'x}{p} \\ f^{3}x &= \lim\limits_{p \to 0} \dfrac{f''x+p-f''x}{p} \\ \vdots & \end{align}$ Jika kita misalkan $h=\dfrac{1}{a}$ maka kita peroleh $a=\dfrac{1}{h}$ Lalu untuk $h \rightarrow \infty$ kita peroleh $a \rightarrow 0$ Dari apa yang kita peroleh di atas kita substitusikan pada soal, sehingga dapat kita tuliskan $\begin{align} & \lim\limits_{h \to \infty} h \left\{ f' \left x+\frac{1}{h} \right -f'x\right \} \\ &= \lim\limits_{a \rightarrow 0} \dfrac{1}{a} \left\{ f' \left x+ a \right -f'x\right \} \\ &= \lim\limits_{a \rightarrow 0} \dfrac{ f' \left x+ a \right -f'x}{a} \end{align}$ Dari bentuk di atas dapat kta simpulkan bahwa yang ditanyakan pada soal adalah turunan kedua dari fungsi $fx=sin^{2}x$, yaitu $\begin{align} fx &= sin^{2}x \\ f'x &= 2\ \cdot sin\ x\ cos\ x \\ f''x &= 2\ \cdot cos\ x\ \cdot cos\ x + 2 \cdot sin\ x \cdot \left-sin\ x \right \\ &= 2\ \cdot cos^{2}x - 2 \cdot sin^{2}x \\ &= 2\ \left cos^{2}x - sin^{2}x \right \\ &= 2\ cos\ 2x \end{align}$ $\therefore$ Pilihan yang sesuai adalah $C\ 2\ cos\ 2x$ 23. Soal UM UGM 2014 Kode 532 *Soal Lengkap Jika $f\left x \right= \left sin\ x + cos\ x \right\left cos\ 2x + sin\ 2x \right$ dan $f'\left x \right=2\ cos\ 3x +gx$ maka $gx=\cdots$ $\begin{align} A\ & cos\ 3x +sin\ x \\ B\ & cos\ 3x -sin\ x \\ C\ & cos\ x +sin\ x \\ D\ & cos\ x - sin\ x \\ E\ & -cos\ x + sin\ x \end{align}$ Alternatif Pembahasan Untuk menyelesaikan soal di atas, kita mungkin memerlukan catatan Rumus Jumlah dan Selisih Dua Sudut pada perbandingan trigonometri. $\begin{align} f\left x \right &= \left sin\ x + cos\ x \right\left cos\ 2x + sin\ 2x \right\\ &= sin\ x\ cos\ 2x + sin\ x\ sin\ 2x + cos\ x\ cos\ 2x + cos\ x\ sin\ 2x\\ &= sin\ x\ cos\ 2x + cos\ x\ sin\ 2x + sin\ x\ sin\ 2x + cos\ x\ cos\ 2x \\ &= sin \left 2x+x \right + cos \left2x-x \right \\ &= sin \left 3x \right + cos \left x \right \\ f'\left x \right\ &= 3\ cos \left 3x \right - sin \left x \right \\ &= 2\ cos \left 3x \right + cos \left 3x \right - sin \left x \right \\ \hline f'\left x \right\ &= 2\ cos \left 3x \right + g \left x \right \\ \end{align}$ $\therefore$ Pilihan yang sesuai adalah $B\ cos\ 3x -sin\ x$ 24. Soal SBMPTN 2014 Kode 589/586 *Soal Lengkap Jika $f\left x \right= 2x + sin\ 2x$ untuk $-\dfrac{\pi}{4} \lt x \lt \dfrac{\pi}{4} $, maka $f'x=\cdots$ $\begin{align} A\ & 4\ \sum\limits_{i=0}^{\infty} \left tan\ x \right ^{i} \\ B\ & 4\ \left 1-cos^{2}x \right \\ C\ & 4\ \sum\limits_{i=0}^{\infty} \left -1 \right ^{i} \left tan\ x \right ^{2i} \\ D\ & 4\ \sum\limits_{i=0}^{\infty} \left -sin\ x \right ^{2i} \\ E\ & 4\ cos\ 2x \end{align}$ Alternatif Pembahasan $\begin{align} f\left x \right &= 2x + sin\ 2x \\ f '\left x \right &= 2 + 2\ cos\ 2x \\ &= 2 \left1 + cos\ 2x \right \\ &= 2 \left1 + 2cos^{2}x-1 \right \\ &= 4cos^{2}x \end{align}$ Sampai pada langkah di atas kita belum mendapatkan jawaban seperti apa yang diinginkan pembuat soal. Kita coba mengeksplorasi beberapa pilihan yang ada. Untuk pilihan $B$ dan $E$ sudah tidak mungkin lagi menjadi jawaban, sehingga yang perlu kita eksplorasi adalah pilihan $A$, $C$, atau $D$. Disini yang kita pilih untuk di eksplorasi adalah pilihan $C\ 4\ \sum\limits_{i=0}^{\infty} \left -1 \right ^{i} \left tan\ x \right ^{2i}$ $\begin{align} & 4\ \sum\limits_{i=0}^{\infty} \left -1 \right ^{i} \left tan\ x \right ^{2i} \\ & =4 \left [ \left -1 \right ^{0} \left tan\ x \right ^{20}+\left -1 \right ^{1} \left tan\ x \right ^{21} + \left -1 \right ^{2} \left tan\ x \right ^{22} +\cdots \right]\\ & =4 \left[ \left 1 \right \left tan\ x \right ^{0}+\left -1 \right \left tan\ x \right ^{2 }+1 \left tan\ x \right ^{4} +\left -1 \right \left tan\ x \right ^{6} +\cdots \right] \\ & = 4 \left[ 1 + \left -1 \right \left tan\ x \right ^{2 }+\left 1 \right \left tan\ x \right ^{4} +\left -1 \right \left tan\ x \right ^{6} +\cdots \right] \\ \hline & a=1\ \text{dan}\ r=-tan^{2}x \\ & S_{\infty}=\dfrac{a}{1-r} \\ \hline & = 4 \left[ \dfrac{1}{1+ tan^{2}x} \right] \\ & = 4 \left[ \dfrac{1}{sec^{2}x} \right] \\ & = 4 \left[ cos^{2}x \right] \\ \end{align}$ Dari hasil eksplorasi di atas kita peroleh $4\ \sum\limits_{i=0}^{\infty} \left -1 \right ^{i} \left tan\ x \right ^{2i} = 4 \left[ cos^{2}x \right]$$\therefore$ Pilihan yang sesuai adalah $C\ 4\ \sum\limits_{i=0}^{\infty} \left -1 \right ^{i} \left tan\ x \right ^{2i}$ 25. Soal SBMPTN 2015 Kode 534 *Soal Lengkap Fungsi $f\left x \right= -\sqrt{cos^{2}x+\frac{x}{2}+\pi}$ untuk $- \pi \lt x \lt 2\pi$, turun pada interval... $\begin{align} A\ & 0 \lt x \lt \dfrac{5\pi}{12} \\ B\ & 0 \lt x \lt \dfrac{\pi}{12} \\ C\ & \dfrac{\pi}{6} \lt x \lt \dfrac{\pi}{3} \\ D\ & \dfrac{5\pi}{12} \lt x \lt \dfrac{7\pi}{12} \\ E\ & -\dfrac{7\pi}{12} \lt x \lt \dfrac{\pi}{12} \end{align}$ Alternatif Pembahasan Sedikit catatan turunan fungsi kita tuliskan yaitu untuk $y=\sqrt{fx}$ maka $y'=\dfrac{f'x}{2\sqrt{fx}}$. $\begin{align} f\left x \right &= -\sqrt{cos^{2}x+\frac{x}{2}+\pi} \\ f '\left x \right &= -\dfrac{-2\ cos\ x\ sin\ x + \frac{1}{2}}{2\sqrt{cos^{2}x+\frac{x}{2}+\pi}} \\ &= \dfrac{2\ cos\ x\ sin\ x - \frac{1}{2}}{2\sqrt{cos^{2}x+\frac{x}{2}+\pi}} \\ &= \dfrac{sin\ 2x - \frac{1}{2}}{2\sqrt{cos^{2}x+\frac{x}{2}+\pi}} \end{align}$ Agar $f\left x \right$ turun maka $f'\left x \right \lt 0$, sehingga dapat kita tuliskan $\begin{align} f '\left x \right & \lt 0 \\ \dfrac{sin\ 2x - \frac{1}{2}}{2\sqrt{cos^{2}x+\frac{x}{2}+\pi}} & \lt 0 \\ \end{align}$ Untuk menentukan penyelesaian pertidaksamaan di atas kita cari pembuat nolnya, yaitu $\begin{align} f '\left x \right & = 0 \\ \dfrac{sin\ 2x - \frac{1}{2}}{2\sqrt{cos^{2}x+\frac{x}{2}+\pi}} & = 0 \\ sin\ 2x - \frac{1}{2} & = 0 \\ sin\ 2x & = \frac{1}{2} \\ sin\ 2x & =sin\ \frac{ \pi}{6} \\ \hline 2x & =\frac{ \pi}{6} + k \cdot 2\pi \\ x & =\frac{ \pi}{12} + k \cdot \pi \\ x & =-\frac{11\pi}{12},\frac{ \pi}{12},\frac{13\pi}{12} \\ \hline 2x & =\pi-\frac{\pi}{6} + k \cdot 2\pi \\ 2x & = \frac{5\pi}{6} + k \cdot 2\pi \\ x & = \frac{5\pi}{12} + k \cdot \pi \\ x & =-\frac{7\pi}{12},\frac{5\pi}{12},\frac{17\pi}{12} \end{align}$ Langkah selanjutnya sama seperti menentukan daerah penyelesaian pada pertidaksamaan, yaitu menggambarkannya pada garis bilangan lalu menguji nilai $x$ dan menetukan daerah atau batasan nilai $x$ yang mengakibatkan $f '\left x \right \lt 0$ Tetapi pada saat ini kita coba manganalisa dari pembuat nol yang kita peroleh di atas dan pilihan $A,B,C,D,E$. Pada soal pilihan yang kita uji adalah $E\ -\dfrac{7\pi}{12} \lt x \lt \dfrac{\pi}{12}$ karena hanya pilihan ini yang memuat pembuat nol pada batas atas dan batas bawahnya. Kita uji nilai $x$ dari $-\dfrac{7\pi}{12} \lt x \lt \dfrac{\pi}{12}$ yaitu $x=0$ $\begin{align} f '\left x \right &= \dfrac{sin\ 2x - \frac{1}{2}}{2\sqrt{cos^{2}x+\frac{x}{2}+\pi}} \\ &= \dfrac{sin\ 20 - \frac{1}{2}}{2\sqrt{cos^{2}0+\frac{0}{2}+\pi}} \\ &= \dfrac{- \frac{1}{2}}{2+\pi} \lt 0 \\ & \text{terbukti}\ f '\left x \right \lt 0 \end{align}$ $\therefore$ Pilihan yang sesuai adalah $E\ -\dfrac{7\pi}{12} \lt x \lt \dfrac{\pi}{12}$ 26. Soal SBMPTN 2015 Kode 541 *Soal Lengkap Fungsi $f\left x \right= \sqrt{cos^{2}2x+x}$ untuk $ x \gt 0$, naik pada interval... $\begin{align} A\ & \dfrac{4\pi}{12} \lt x \lt \dfrac{13\pi}{12} \\ B\ & \dfrac{5\pi}{24} \lt x \lt \dfrac{13\pi}{24} \\ C\ & \dfrac{7\pi}{6} \lt x \lt \dfrac{11\pi}{6} \\ D\ & \dfrac{5\pi}{24} \lt x \lt \dfrac{11\pi}{24} \\ E\ & \dfrac{5\pi}{12} \lt x \lt \dfrac{11\pi}{12} \end{align}$ Alternatif Pembahasan Sedikit catatan turunan fungsi kita tuliskan yaitu untuk $y=\sqrt{fx}$ maka $y'=\dfrac{f'x}{2\sqrt{fx}}$. $\begin{align} f\left x \right &= \sqrt{cos^{2}2x+x} \\ f '\left x \right &= \dfrac{-2\ cos\ 2x\ \cdot 2 \cdot sin\ 2x + 1}{2\sqrt{cos^{2}2x+x}} \\ &= \dfrac{-4\ cos\ 2x\ sin\ 2x + 1}{2\sqrt{cos^{2}2x+x}} \\ &= \dfrac{-2 sin\ 4x +1}{2\sqrt{cos^{2}2x+x}} \end{align}$ Agar $f\left x \right$ naik maka $f'\left x \right \gt 0$, sehingga dapat kita tuliskan $\begin{align} f '\left x \right & \gt 0 \\ \dfrac{-2 sin\ 4x +1}{2\sqrt{cos^{2}2x+x}} & \gt 0 \\ \end{align}$ Untuk menentukan penyelesaian pertidaksamaan di atas kita cari pembuat nolnya, yaitu $\begin{align} f '\left x \right & = 0 \\ \dfrac{-2 sin\ 4x +1}{2\sqrt{cos^{2}2x+x}} & = 0 \\ -2 sin\ 4x +1 & = 0 \\ 2sin\ 4x & = 1 \\ sin\ 4x & = \dfrac{ 1}{2} \\ sin\ 4x & = sin\ \frac{ \pi}{6} \\ \hline 4x & =\frac{ \pi}{6} + k \cdot 2\pi \\ x & =\frac{ \pi}{24} + k \cdot \frac{ \pi}{2}\\ x & =\frac{\pi}{24},\ \frac{13 \pi}{12},\ \frac{25\pi}{24},\cdots \\ \hline 4x & =\pi-\frac{\pi}{6} + k \cdot 2\pi \\ 4x & = \frac{5\pi}{6} + k \cdot 2\pi \\ x & = \frac{5\pi}{24} + k \cdot \frac{ \pi}{2} \\ x & = \frac{5\pi}{24},\ \frac{17\pi}{24},\ \frac{29\pi}{24},\cdots \end{align}$ Langkah selanjutnya sama seperti menentukan daerah penyelesaian pada pertidaksamaan, yaitu menggambarkannya pada garis bilangan lalu menguji nilai $x$ dan menetukan daerah atau batasan nilai $x$ yang mengakibatkan $f '\left x \right \gt 0$ Tetapi pada saat ini kita coba manganalisa dari pembuat nol yang kita peroleh di atas dan pilihan $A,B,C,D,E$. Pada soal pilihan yang kita uji adalah $B\ \dfrac{5\pi}{24} \lt x \lt \dfrac{13\pi}{24}$ karena hanya pilihan ini yang memuat pembuat nol pada batas atas dan batas bawahnya. Kita uji nilai $x$ dari $\dfrac{5\pi}{24} \lt x \lt \dfrac{13\pi}{24}$ yaitu $x=\dfrac{12\pi}{24}=90$ $\begin{align} f '\left x \right &= \dfrac{-2 sin\ 4x +1}{2\sqrt{cos^{2}2x+x}} \\ &= \dfrac{-2 sin\ 490 +1}{2\sqrt{1+90}} \\ &= \dfrac{0+1}{2\sqrt{1+90}} \\ &= \dfrac{1}{2\sqrt{1+90}} \gt 0 \\ & \text{terbukti}\ f '\left x \right \gt 0 \end{align}$ $\therefore$ Pilihan yang sesuai adalah $B\ \dfrac{5\pi}{24} \lt x \lt \dfrac{13\pi}{24}$ 26. Soal SBMPTN 2015 Kode 510 *Soal Lengkap Fungsi $f\left x \right= \sqrt{2+\frac{x}{\sqrt{2}}-sin\ x}$ untuk $ -\pi \leq x \leq \pi$, turun pada interval... $\begin{align} A\ & 0 \leq x \leq \dfrac{ \pi}{ 2} \\ B\ & 0 \lt x \lt \pi \\ C\ & -\dfrac{ \pi}{ 3} \leq x \leq 0 \\ D\ & -\dfrac{ \pi}{ 3} \leq x \leq \dfrac{\pi}{3} \\ E\ & -\dfrac{ \pi}{4} \lt x \lt \dfrac{\pi}{4} \end{align}$ Alternatif Pembahasan Sedikit catatan turunan fungsi kita tuliskan yaitu untuk $y=\sqrt{fx}$ maka $y'=\dfrac{f'x}{2\sqrt{fx}}$. $\begin{align} f\left x \right &= \sqrt{2+\frac{x}{\sqrt{2}}-sin\ x} \\ f '\left x \right &= \dfrac{\frac{1}{\sqrt{2}}- cos\ x}{2\sqrt{2+\frac{x}{\sqrt{2}}-sin\ x}} \end{align}$ Agar $f\left x \right$ turun maka $f'\left x \right \lt 0$, sehingga dapat kita tuliskan $\begin{align} f '\left x \right & \lt 0 \\ \dfrac{\frac{x}{\sqrt{2}}- cos\ x}{2\sqrt{2+\frac{x}{\sqrt{2}}-sin\ x}} & \lt 0 \\ \end{align}$ Untuk menentukan penyelesaian pertidaksamaan di atas kita cari pembuat nolnya, yaitu $\begin{align} f '\left x \right & = 0 \\ \dfrac{\frac{x}{\sqrt{2}}- cos\ x}{2\sqrt{2+\frac{x}{\sqrt{2}}-sin\ x}} & = 0 \\ \frac{x}{\sqrt{2}}- cos\ x & = 0 \\ cos\ x & = \frac{x}{\sqrt{2}} \\ cos\ x & = cos\ \frac{ \pi}{4} \\ \hline x & =\frac{ \pi}{4} + k \cdot 2\pi \\ x & =\frac{\pi}{4} \\ \hline x & =-\frac{ \pi}{4} + k \cdot 2\pi \\ x & =-\frac{\pi}{4},\ \frac{7\pi}{4} \\ \end{align}$ Langkah selanjutnya sama seperti menentukan daerah penyelesaian pada pertidaksamaan, yaitu menggambarkannya pada garis bilangan lalu menguji nilai $x$ dan menetukan daerah atau batasan nilai $x$ yang mengakibatkan $f '\left x \right \gt 0$ Tetapi pada saat ini kita coba manganalisa dari pembuat nol yang kita peroleh di atas dan pilihan $A,B,C,D,E$. Pada soal pilihan yang kita uji adalah $E\ -\dfrac{ \pi}{4} \lt x \lt \dfrac{\pi}{4}$ karena hanya pilihan ini yang memuat pembuat nol pada batas atas dan batas bawahnya. Kita uji nilai $x$ dari $-\dfrac{ \pi}{4} \lt x \lt \dfrac{\pi}{4}$ yaitu $x=0$ $\begin{align} f '\left x \right &= \dfrac{\frac{1}{\sqrt{2}}- cos\ x}{2\sqrt{2+\frac{x}{\sqrt{2}}-sin\ x}} \\ &= \dfrac{\frac{1}{\sqrt{2}}- cos\ 0}{2\sqrt{2+\frac{0}{\sqrt{2}}-sin\ 0}} \\ &= \dfrac{\frac{1}{\sqrt{2}}- 1}{2\sqrt{2+0-0}} \gt 0 \\ & \text{terbukti}\ f '\left x \right \lt 0 \end{align}$ $\therefore$ Pilihan yang sesuai adalah $E\ -\dfrac{ \pi}{4} \lt x \lt \dfrac{\pi}{4}$ 27. Soal UMPTN 1996 Rayon A *Soal LengkapPersamaan garis yang tegak lurus garis singgung kurva $y=tan\ x$ di titik $\left \frac{\pi}{4},1 \right$ adalah... $\begin{align} A\ & y=-\dfrac{x}{2}+\dfrac{\pi}{4}+1 \\ B\ & y=-\dfrac{x}{2}+\dfrac{\pi}{8}-1 \\ C\ & y=-\dfrac{x}{2}-\dfrac{\pi}{8}-1 \\ D\ & y=-\dfrac{x}{2}-\dfrac{\pi}{4}-1 \\ E\ & y=-\dfrac{x}{2}+\dfrac{\pi}{8}+1 \end{align}$ Alternatif PembahasanGradien garis singgung kurva $y=tan\ x$ di titik $\left \frac{\pi}{4},1 \right$ adalah $\begin{align} y & = tan\ x \\ m=y' & = sec^{2} x \\ & = \dfrac{1}{cos^{2}\ x} \\ & = \dfrac{1}{cos^{2} \left \frac{\pi}{4} \right} \\ & = \dfrac{1}{\left \frac{1}{2} \sqrt{2} \right^{2}} \\ & = \dfrac{1}{\left \frac{1}{4} \cdot 2 \right} = 2 \end{align}$ Dua garis saling tegak lurus maka perkalian kedua gradien garis adalah $-1$ atau $m_{1} \cdot m_{2}=-1$, sehingga garis yang tegak lurus dengan garis singgung kurva gradiennya adalah $m=-\dfrac{1}{2}$. Persamaan garis yang tegak lurus dengan garis singgung kurva di titik $\left \frac{\pi}{4},1 \right$ dan $m=-\dfrac{1}{2}$ adalah $\begin{align} y-y_{1} & = m \left x-x_{1} \right \\ y-1 & = -\dfrac{1}{2} \left x-\frac{\pi}{4} \right \\ y-1 & = -\dfrac{1}{2}x +\dfrac{\pi}{8} \\ y & = -\dfrac{1}{2}x +\dfrac{\pi}{8}+1 \end{align}$$\therefore$ Pilihan yang sesuai adalah $E\ y=-\dfrac{x}{2}+\dfrac{\pi}{8}+1$ 28. Soal SIMAK UI 2010 Kode 205 *Soal Lengkap Jika diketahui $fx= \left tan x \right$, maka laju perubahan $fx$ pada saat $x=k$, dimana $\dfrac{\pi}{2} \lt x \lt \pi$ akan sama dengan... $\begin{align} A\ & -sin\ k \\ B\ & cos\ k \\ C\ & -sec^{2}\ k \\ D\ & sec^{2}\ k \\ E\ & cot\ k \end{align}$ Alternatif Pembahasan Berdasarkan definisi nilai mutlak fungsi $fx= \left tan x \right$ dapat kita tuliskan, $ \left tan x \right = \left\{\begin{array}{cc} tan x,\ \text{untuk}\ tan x \geq 0 \\ -tan x,\ \text{untuk}\ tan x \lt 0 \end{array} \right.$ Untuk $k=x$ dan $\dfrac{\pi}{2} \lt k \lt \pi$ maka $x$ berada di kuadran II diperoleh $tan x$ bernilai negatif sehingga $fx=- tan\ x$. Laju perubahan $fx$ terhadap $x$ dapat kita tuliskan $\dfrac{dfx}{dx}=-sec^{2}x$, dan laju perubahan $fx$ pada saat $x=k$ adalah $\dfrac{dfk}{dx}=-sec^{2}k$ $\therefore$ Pilihan yang sesuai adalah $C\ -sec^{2}\ k$ 29. Soal SIMAK UI 2010 Kode 208 *Soal Lengkap $y= sin\left sin\left sin\left sin\left \cdots\left sin\left sin\ x \right \right \right \cdots \right \right \right $ Tentukan $\dfrac{dy}{dx}$ pada $x=0$. $\begin{align} A\ & - \infty \\ B\ & -1 \\ C\ & 0 \\ D\ & 1 \\ E\ & \infty \end{align}$ Alternatif Pembahasan Untuk menyelesaikan soal di atas kita lakukan dengan beberapa eksplorasi dengan fungsi yang sederhana. Untuk $y=sinx$ $\begin{align} f'x=\dfrac{dy}{dx}\ & =cosx \\ f'0\ & =cos0 \\ = 1 \end{align}$ Untuk $y=sin\left sin\ x \right $ $\begin{align} f'x=\dfrac{dy}{dx}\ & =cos\left sin\ x \right \cdot cosx \\ f'0\ & =cos\left sin\ 0 \right \cdot cos0 \\ & =cos\left 0 \right \cdot 1 \\ & =1 \end{align}$ Untuk $y=sin\left sin \left sin\ x \right \right $ $\begin{align} f'x=\dfrac{dy}{dx}\ & =cos \left sin \left sin\ x \right \right \cdot cos \left sin\ x \right \cdot cosx \\ f'0\ & =cos \left sin \left sin\ 0 \right \right \cdot cos \left sin\ 0 \right \cdot cos0 \\ & =cos \left sin \left 0 \right \right \cdot cos \left 0 \right \cdot 1 \\ & =cos \left 0 \right \cdot 1 \cdot 1 \\ & =1 \cdot 1 \cdot 1 \\ & =1 \end{align}$ Jika kita lakukan eksplorasi pada langkah berikutnya hasilnya juga adalah $1$ dan ini menjawab untuk fungsi $y= sin\left sin\left sin\left sin\left \cdots\left sin\left sin\ x \right \right \right \cdots \right \right \right $ hasilnya adalah $1$. $\therefore$ Pilihan yang sesuai adalah $C\ 1$ 30. Soal UMPTN 1991 *Soal Lengkap Nilai maksimum dari $fx= 2\ cos\ 2x + 4\ sin\ x$ untuk $0 \lt x \lt \pi$, adalah... $\begin{align} A\ & 2 \\ B\ & 3 \\ C\ & 4 \\ D\ & -6 \\ E\ & -12 \end{align}$ Alternatif Pembahasan Untuk menyelesaikan soal di atas kita coba selesaikan dengan uji turunan pertama $f'x= 0$ $\begin{align} fx & = 2\ cos\ 2x + 4\ sin\ x \\ f'x & = -4\ sin\ 2x + 4\ cos\ x \end{align}$ Untuk $f'x=0$, kita peroleh $\begin{align} -4\ sin\ 2x + 4\ cos\ x & = 0 \\ -4\ 2\ sin\ x\ cos\ x + 4\ cos\ x & = 0 \\ -4\ cos\ x \left2\ sin\ x - 1 \right & = 0 \\ -4\ cos\ x= 0\ \text{atau}\ 2\ sin\ x - 1 & = 0 \\ cos\ x= 0\ \text{atau}\ sin\ x & = \frac{1}{2} \\ \end{align}$ Untuk $0 \lt x \lt \pi$ kita peroleh Saat $cos\ x= 0$ nilai $x$ yang memenuhi adalah $x=90^{\circ}$ $\begin{align} fx & = 2\ cos\ 2x + 4\ sin\ x \\ f \left 90^{\circ} \right & = 2\ cos\ 2\left 90^{\circ} \right + 4\ sin\ \left 90^{\circ} \right \\ & = 2\ cos\ 180^{\circ} + 4 sin\ 90^{\circ} \\ & = 2\ \left -1 \right + 4 \left 1 \right = 2 \end{align}$ Saat $sin\ x = \dfrac{1}{2}$ nilai $x$ yang memenuhi adalah $x=30^{\circ}, 150^{\circ}$ $\begin{align} fx & = 2\ cos\ 2x + 4\ sin\ x \\ f \left 30^{\circ} \right & = 2\ cos\ 2\left 30^{\circ} \right + 4\ sin\ \left 30^{\circ} \right \\ & = 2\ cos\ 60^{\circ} + 4 sin\ 30^{\circ} \\ & = 2\ \left \frac{1}{2} \right + 4 \left \frac{1}{2} \right = 3 \end{align}$ $\begin{align} fx & = 2\ cos\ 2x + 4\ sin\ x \\ f \left 150^{\circ} \right & = 2\ cos\ 2\left 150^{\circ} \right + 4\ sin\ \left 150^{\circ} \right \\ & = 2\ cos\ 300^{\circ} + 4\ sin\ 150^{\circ} \\ & = 2\ \left \frac{1}{2} \right + 4\ \left \frac{1}{2} \right = 3 \end{align}$ $\therefore$ Pilihan yang sesuai adalah $B\ 3$ 31. Soal UMPTN 1992 *Soal Lengkap Diketahui $fx= \dfrac{2+cos\ x}{sin\ x}$. Garis singgung grafiknya pada $x=\dfrac{\pi}{2}$ memotong sumbu $y$ di titik $\left 0,b \right$, nilai $b$ yang memenuhi adalah... $\begin{align} A\ & 2 \\ B\ & \dfrac{\pi}{2} \\ C\ & -2+\dfrac{\pi}{2} \\ D\ & 2-\dfrac{\pi}{2} \\ E\ & 2+\dfrac{\pi}{2} \end{align}$ Alternatif Pembahasan Untuk menyelesaikan soal di atas kita coba selesaikan dengan uji turunan pertama, dimana kita ketahui bahwa gradien garis singgung $m=f'x$. $\begin{align} fx & = \dfrac{2+cos\ x}{sin\ x} \\ \hline u = 2+cos\ x & \rightarrow u'=-sin\ x \\ v = sin\ x & \rightarrow u'=cos\ x \\ \hline f'x & = \dfrac{u' \cdot v - u \cdot v' }{v^{2}} \\ & = \dfrac{\left -sin\ x \right\left sin\ x \right-\left 2+cos\ x \right\left cos\ x \right}{sin^{2} x} \\ & = \dfrac{ -sin^{2} x -2cos\ x - cos^{2} x }{sin^{2} x} \\ & = \dfrac{ - \leftsin^{2} x 2cos\ x + cos^{2} x \right }{sin^{2} x} \\ & = \dfrac{ -\left1 +2cos\ x \right}{sin^{2} x} \end{align}$ Gradien garis singgung $m=f'x$ saat $x=\dfrac{\pi}{2}$ adalah $\begin{align} m & = \dfrac{ -\left1 +2cos\ x \right}{sin^{2} x} \\ & = \dfrac{ -\left1 +2cos\ \frac{\pi}{2} \right}{sin^{2} \frac{\pi}{2}} \\ & = \dfrac{ -\left1 +2 \cdot 0 \right}{1^{2}} = -1 \end{align}$ Untuk $x=\dfrac{\pi}{2}$, kita peroleh $y=fx$, yaitu $\begin{align} y & = \dfrac{2+cos\ x}{sin\ x} \\ & = \dfrac{2+cos\ \frac{\pi}{2}}{sin\ \frac{\pi}{2}} \\ & = \dfrac{2+ 0}{1} 2 \end{align}$ Persamaan garis singgung yang melelui titik $\left \frac{\pi}{2}, 2 \right$ dan gradien $m=-1$ adalah $\begin{align} y-y_{1} & = m \left x -x_{1} \right \\ y-2 & = -1 \left x - \frac{\pi}{2} \right \\ y-2 & = -x + \frac{\pi}{2} \\ y & = -x + \frac{\pi}{2} +2 \end{align}$ Memotong sumbu $y$ adalah pada saat $x=0$, yaitu $\left 0, \frac{\pi}{2} +2 \right$ $\therefore$ Pilihan yang sesuai adalah $E\ \frac{\pi}{2} +2 $ Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras Beberapa pembahasan soal Turunan Fungsi Trigonometri di atas adalah coretan kreatif siswa pada lembar jawaban penilaian harian matematika, lembar jawaban penilaian akhir semester matematika, presentasi hasil diskusi matematika atau pembahasan quiz matematika di kelas. Untuk segala sesuatu hal yang perlu kita diskusikan terkait 30+ Soal dan Pembahasan Matematika Dasar SMA Turunan Fungsi Trigonometri silahkan disampaikan π CMIIWπ. Jangan Lupa Untuk Berbagi π Share is Caring π dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLEπ
soal dan pembahasan turunan fungsi trigonometri